The Phase Transition Analysis for the Random Regular Exact 2-(d, k)-SAT Problem

نویسندگان

چکیده

In a regular (d,k)-CNF formula, each clause has length k and variable appears d times. A structure such as this is symmetric, the satisfiability problem of symmetric called (d,k)-SAT for short. The exact 2-(d,k)-SAT that formula F, if there truth assignment T, then exactly two literals in F are true. If contains only positive or negative literals, satisfiable T with size 2n/k 2-exactly satisfiable. This paper introduces instance generation model, constructs solution space, employs method first second moments to present phase transition point d* literals. When d<d*, can be satisfied high probability. d>d*, not Finally, verification results demonstrate theoretical consistent experimental results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Condensation Phase Transition in the Regular k-SAT Model

Much of the recent work on phase transitions in discrete structures has been inspired by ingenious but non-rigorous approaches from physics. The physics predictions typically come in the form of distributional fixed point problems that mimic Belief Propagation, a message passing algorithm. In this paper we show how the Belief Propagation calculation can be turned into a rigorous proof of such a...

متن کامل

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

The phase transition in random regular exact cover

A k-uniform, d-regular instance of Exact Cover is a family of m sets Fn,d,k = {Sj ⊆ {1, . . . , n}}, where each subset has size k and each 1 ≤ i ≤ n is contained in d of the Sj . It is satisfiable if there is a subset T ⊆ {1, . . . , n} such that |T ∩ Sj | = 1 for all j. Alternately, we can consider it a d-regular instance of Positive 1-in-k SAT, i.e., a Boolean formula with m clauses and n var...

متن کامل

Random k-GD-Sat Model and its Phase Transition

We present a new type of sat problem called the k-gd-sat, which generalizes k-sat and gd-sat. In k-gd-sat, clause lengths have geometric distribution, controlled by a probability parameter p; for p = 1, a k-gd-sat problem is a k-sat problem. We report on the phase transition between satisfiability and unsatisfiability for randomly generated instances of k-gd-sat. We provide theoretical analysis...

متن کامل

Solutions to the Problem of K-SAT / K-COL Phase Transition Location

As general theories, currently there are concentration inequalities (of random walk) only for the cases of independence and martingale differences. In this paper, the concentration inequalities are extended to more general situations. In terms of the theory presented in the paper, the condition of independence is ∂y ∂t = constant and martingale difference’s is ∂y ∂t = 0. This paper relaxes thes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Symmetry

سال: 2021

ISSN: ['0865-4824', '2226-1877']

DOI: https://doi.org/10.3390/sym13071231